Menurut laporan McKinsey & Company: The State of AI in Early 2024, adopsi kecerdasan buatan di perusahaan meningkat hampir dua kali lipat dibanding dua tahun sebelumnya.
Salah satu pendorong utama lonjakan ini adalah hadirnya AI agent, sistem cerdas yang mampu bekerja secara mandiri dan adaptif untuk menyelesaikan tugas tertentu.
Namun, apa sebenarnya yang dimaksud dengan AI agent? Bagaimana jenis-jenisnya diterapkan dalam kehidupan sehari-hari maupun bisnis modern?
Memahami Konsep AI Agent
Sebelum kita membahas jenis-jenisnya, mari pahami dulu apa yang dimaksud dengan AI agent.
Menurut Gartner (2024), AI agent adalah entitas perangkat lunak otonom atau semi-otonom yang menggunakan teknik kecerdasan buatan untuk mengamati lingkungan, membuat keputusan, dan bertindak guna mencapai tujuan tertentu.
Dalam konteks perusahaan, AI agent sering dimanfaatkan untuk mengotomasi proses kerja, menganalisis data, hingga meningkatkan pengalaman pelanggan melalui keputusan yang cepat dan berbasis data.
Baca juga: Cara Membangun Agen AI untuk Pemula
Jenis-Jenis AI Agent dan Fungsinya
Setiap jenis AI agent memiliki cara kerja dan tingkat kecerdasan yang berbeda. Berikut penjelasan runutnya:
1. Simple Reflex Agent
AI agent ini beroperasi berdasarkan aturan if-then. Ia hanya merespons kondisi saat ini tanpa mempertimbangkan konteks sebelumnya.
Contoh: sistem pendingin ruangan otomatis yang menyala ketika suhu ruangan melewati batas tertentu.
Jenis ini banyak ditemukan pada sistem otomatisasi dasar dalam industri dan rumah pintar.
2. Model-Based Reflex Agent
Berbeda dari tipe pertama, agent ini menyimpan representasi dari dunia sekitarnya sehingga bisa membuat keputusan lebih kontekstual.
Contoh: chatbot layanan pelanggan yang mengingat riwayat percakapan untuk memberikan jawaban lebih relevan, yang merupakan salah satu aplikasi umum intelligent virtual agent yang kini banyak diadopsi oleh perusahaan global (Gartner, 2024)
3. Goal-Based Agent
Tipe ini memiliki goal atau tujuan tertentu, lalu memilih tindakan terbaik untuk mencapainya.
Contoh: sistem navigasi otomatis (self-driving car) yang menghitung rute tercepat dan paling aman menuju tujuan, berdasarkan data sensor dan peta real-time.
4. Utility-Based Agent
Agent ini mempertimbangkan berbagai opsi dan memilih tindakan yang memberi hasil terbaik (utility tertinggi).
Contoh: sistem rekomendasi produk di e-commerce yang menampilkan produk paling sesuai dengan preferensi pengguna, berdasarkan analisis perilaku pembelian sebelumnya.
5. Learning Agent
Jenis ini paling canggih karena mampu belajar dari pengalaman dan memperbaiki kinerjanya seiring waktu.
Contoh: sistem deteksi penipuan di sektor keuangan yang terus beradaptasi terhadap pola transaksi baru, seperti yang banyak diterapkan dalam fraud prevention system berbasis AI di bank besar (McKinsey, 2024)
Contoh Aplikasi AI Agent di Dunia Nyata
AI agent kini telah menjadi bagian dari berbagai industri besar di dunia:
- Perbankan: AI agent digunakan untuk fraud detection dan chatbot yang siap melayani nasabah 24 jam.
- Kesehatan: AI membantu menganalisis citra medis untuk mempercepat diagnosis dan meminimalkan human error.
- Manufaktur: Autonomous agent memonitor jalannya produksi dan melakukan perbaikan otomatis saat mendeteksi anomali.
- Customer Service: Agentic AI assistant menghadirkan layanan cepat dan personal untuk meningkatkan kepuasan pelanggan.
- IT & Operasional: Agentic automation membantu tim IT melakukan pemantauan sistem dan troubleshooting otomatis.
Baca juga: Agentic AI vs Generative AI: Panduan Strategis untuk Business Leaders 2025
AI Agent dan Masa Depan Agentic Automation
Menurut Gartner Press Release (2024), Agentic AI diprediksi akan mampu menyelesaikan hingga 80% permasalahan layanan pelanggan tanpa intervensi manusia pada tahun 2029 (Gartner, 2024).
Hal ini menunjukkan arah baru di mana otomatisasi tidak hanya menjalankan perintah, tetapi memahami konteks dan tujuan bisnis.
Konsep ini dikenal dengan istilah Agentic Automation, di mana AI agent bekerja sebagai mitra kolaboratif yang adaptif, bukan sekadar alat pasif.
Dengan sistem yang mampu belajar dan beradaptasi, organisasi dapat meningkatkan efisiensi sekaligus mempercepat pengambilan keputusan berbasis data.
Kolaborasi dengan IDstar untuk Solusi Agentic Automation
Transformasi menuju Agentic Automation membutuhkan kombinasi antara teknologi canggih dan talenta TI yang terampil.
IDstar hadir sebagai penyedia Agentic Automation & IT Outsourcing dengan lebih dari 900+ IT Talent Ready, berkolaborasi dengan partner global seperti UiPath, untuk membantu perusahaan mewujudkan transformasi digital yang berkelanjutan.
Baca juga: Automation Services Terbaik Indonesia, Mengapa IDstar?
Referensi kredibel:
- McKinsey & Company. 2024. The State of AI in Early 2024: Gen AI adoption spikes and starts to generate value. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
- Gartner. 2025. Gartner Predicts that Guardian Agents will Capture 10-15% of the Agentic AI Market by 2030. https://www.gartner.com/en/newsroom/press-releases/2025-06-11-gartner-predicts-that-guardian-agents-will-capture-10-15-percent-of-the-agentic-ai-market-by-2030
- Gartner. Press Release 2025. Gartner Predicts Agentic AI Will Autonomously Resolve 80% of Common Customer Service Issues Without Human Intervention by 2029. https://www.gartner.com/en/newsroom/press-releases/2025-03-05-gartner-predicts-agentic-ai-will-autonomously-resolve-80-percent-of-common-customer-service-issues-without-human-intervention-by-20290